
1

Microprofile
Specs from 1.0 to 3.0

 @rafabene

rafael.benevides@oracle.com

http://bit.ly/slides-microprofileLink

http://twitter.com/rafabene
http://bit.ly/slides-microprofile

Rafael Benevides
Cloud-Native Development Advocate

 rafael.benevides@oracle.com
 @rafabene

Java Certifications:
 SCJA / SCJP / SCWCD / SCBCD / SCEA
JBoss Certifications:
 JBCD / JBCAA
Red Hat Certifications:
 OpenShift / Containers / Ansible
Other Certifications:
 SAP Netweaver / ITIL / IBM Software Quality

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, timing, and pricing
of any features or functionality described for Oracle’s products may change and remains
at the sole discretion of Oracle Corporation.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 4

https://developer.oracle.com

https://developer.oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 5

https://cloudnative.oracle.com

https://cloudnative.oracle.com/

Visite o nosso estande!

● Faça um trial e ganhe um brinde
● Faça um hands on e ganhe outro brinde

What is Eclipse Microprofile?

● Eclipse MicroProfile is an open-source community specification for Enterprise
Java microservices

● A community of individuals, organizations, and vendors collaborating within
an open source (Eclipse) project to bring microservices to the Enterprise Java
community

@rafabene

Community - individuals, organizations, vendors

@rafabene

Current MicroProfile implementations

@rafabene

SMALLRYE

MicroProfile 1.0 (Sep, 2016)

MicroProfile 1.0

JAX-RS 2.0JSON-P 1.0CDI 1.2

@rafabene

Eclipse MicroProfile 1.1 (Aug, 2017)

@rafabene

MicroProfile 1.1

= New
= No change from last release

JAX-RS 2.0JSON-P 1.0CDI 1.2

Config 1.0

Configuration

Applications need to be configured based on a running environment. It must be
possible to modify configuration data from outside an application so that the

application itself does not need to be repackaged

Dev
Test

Prod

@rafabene https://github.com/eclipse/microprofile-config

https://github.com/eclipse/microprofile-config

Configuration

By default there are 3 default config sources:

● System.getProperties() (ordinal=400)
● System.getenv() (ordinal=300)
● all META-INF/microprofile-config.properties files. (default ordinal=100)

@rafabene

@Inject
@ConfigProperty(name = "preference.api.url",

defaultValue = "http://localhost:8180/")
private String preferenceURL;

Configuration

CDI

CDI

Configuration

getPropertyNames()

getConfigSources()

getValue(...)

15@rafabene

Eclipse MicroProfile 1.2 (Sep, 2017)

@rafabene

MicroProfile 1.2

= Updated
= No change from last release

JAX-RS 2.0JSON-P 1.0CDI 1.2

Config 1.1
Fault

Tolerance 1.0

JWT
Propagation

1.0

Health
Check 1.0 Metrics 1.0

= New

Health Check 1.0

@rafabene

Health checks are used to probe the state of a computing node from another
machine (i.e. kubernetes service controller) with the primary target being cloud
infrastructure environments where automated processes maintain the state of

computing nodes

https://github.com/eclipse/microprofile-health/

https://github.com/eclipse/microprofile-health/

Health Check 1.0 - Goals

@rafabene

● MUST be compatibility with well known cloud platforms
(i.e. http://kubernetes.io/docs/user-guide/liveness/)

● MUST be appropriate for machine-to-machine
communication

● SHOULD give enough information for a human
administrator

http://kubernetes.io/docs/user-guide/liveness/

Health Check 1.0 (Outcomes and Checks)

@rafabene

@Health
@ApplicationScoped
public class UserAvailabilityHealthCheck implements HealthCheck {

 @Override
 public HealthCheckResponse call() {
 HealthCheckResponseBuilder response = HealthCheckResponse.named("usersAvailable");
 try {

// Try users microservices
 return response.up().build();
 } catch (Exception ex) {
 return response.down().build();
 }
 }
}

http://localhost:8080/health

http://localhost:8080/health

Health Check 1.0 (Outcomes and Checks)

@rafabene

@Health
@ApplicationScoped
public class SubscribersListFullCheck implements HealthCheck {

 @Override
 public HealthCheckResponse call() {
 HealthCheckResponseBuilder response =

HealthCheckResponse.named("subscribersListFull");
 try {

// Try users microservices
response.withData("Number of subscribers",

 numberOfSubscribers)
 return response.up().build();
 } catch (Exception ex) {
 return response.down().build();
 }
 }
}

http://localhost:8080/health

http://localhost:8080/health

Metrics 1.0

@rafabene

To ensure reliable operation of software it is necessary to monitor essential system
parameters. Metrics adds well-known monitoring endpoints and metrics for each

process

Metric Registry
Required Base metrics
Application metrics
Vendor-specific metrics

Metrics 1.0 - Goals

@rafabene

● Alternative to JMX but for a polyglot environment
● Standard

○ API path,
○ data types involved,
○ always available metrics
○ return codes used

Metrics 1.0 - Difference to health checks

@rafabene

Metrics can also help those scheduling systems decide when to scale the
application to run on more or fewer machines.

Health Check Metric
YES/NO Response long term trend data for capacity planning

"Is my application still running ok?" pro-active discovery of issues (e.g. disk
usage growing without bounds

Metrics 1.0 - Goals

@rafabene

General
● UsedHeapMemory
● CommittedHeapMemory
● MaxHeapMemory
● GCCount & GCTime
● JVM Uptime

Thread
● ThreadCount
● DaemonThreadCount
● PeakThreadCount
● ActiveThreads
● PoolSize

ClassLoading
● LoadedClassCount
● TotalLoadedClassLoaded
● UnloadedClassCount

Operating System
● AvailableProcessors
● SystemLoadAverage
● ProcessCpuLoad

Metrics 1.0 - Goals

@rafabene

The following three sets of sub-resource (scopes) are exposed.

• base: metrics that all MicroProfile vendors have to provide

• vendor: vendor specific metrics (optional)

• application: application-specific metrics (optional)

http://localhost:8080/metrics
http://localhost:8080/metrics/base
http://localhost:8080/metrics/vendor
http://localhost:8082/metrics/application

http://localhost:8080/metrics
http://localhost:8080/metrics/base
http://localhost:8080/metrics/vendor
http://localhost:8082/metrics/application

Metrics 1.0 - API
The easiest way is to annotate field, method or class with an annotation.

Annotation Description Default Unit

@Counted Denotes a counter, which counts the invocations
of the annotated object.

MetricUnits.NONE

@Gauge Denotes a gauge, which samples the value of the
annotated object.

none Must be supplied by the
user

@Metered Denotes a meter, which tracks the frequency of
invocations of the annotated object.

MetricUnits.PER_SECOND

@Metric An annotation that contains the metadata
information when requesting a metric to be
injected or produced

MetricUnits.NONE

@Timed Denotes a timer, which tracks duration of the
annotated object.

MetricUnits.NANOSECONDS

Fault Tolerance 1.0

@rafabene

Fault tolerance is about leveraging different strategies to guide the execution and
result of some logic. Retry policies, bulkheads, and circuit breakers are

popular concepts in this area. They dictate whether and when executions should
take place, and fallbacks offer an alternative result when an execution does not

complete successfully

https://github.com/eclipse/microprofile-fault-tolerance

https://github.com/eclipse/microprofile-fault-tolerance

Fault Tolerance 1.0

@rafabene

@Timeout - Define a duration for timeout

@Retry - Define a criteria on when to retry

@Fallback - Provide an alternative solution for a failed execution

@Bulkhead - Isolate failures in part of the system while the rest of
the system can still function

@CircuitBreaker - Offer a way of fail fast by automatically failing
execution to prevent the system overloading and
indefinite wait or timeout by the clients

Fault Tolerance 1.0

@rafabene

@Fallback(fallbackMethod = "defaultAuthor")
@Retry(maxRetries = 5)
@CircuitBreaker(requestVolumeThreshold = 10,
 failureRatio = 0.6,
 delay = 2000L,
 successThreshold = 2)
@Timeout(800)
public JsonObject findAuthorByEmail(String email) {

// Call remote service
}

public JsonObject defaultAuthor(String email) {
 return Json.createObjectBuilder()
 .add("firstName", "")
 .add("lastName", "Unkown")
 .add("bio", "Try again later")
 .add("email", email)
 .build();
}

JWT Propagation

@rafabene

The security requirements that involve microservice architectures are strongly
related with RESTful Security. In a RESTful architecture style, services are usually

stateless and any security state associated with a client is sent to the target
service on every request in order to allow services to re-create a security context

for the caller and perform both authentication and authorization checks

https://github.com/eclipse/microprofile-jwt-auth

https://github.com/eclipse/microprofile-jwt-auth

What is JWT?

@rafabene

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact
and self-contained way for securely transmitting information between parties as a

JSON object

A client sends a HTTP request to Service A including the JWT as a bearer token:

https://tools.ietf.org/html/rfc7519

What is JWT?

@rafabene

JWT UsageJAX-RS &
OpenAPI

Eclipse MicroProfile 1.3 (Jan, 2018)

@rafabene

MicroProfile 1.3

JAX-RS 2.0JSON-P 1.0CDI 1.2 Config 1.2

Fault
Tolerance 1.0

JWT
Propagation

1.0

Health
Check 1.0Metrics 1.1

Open
Tracing 1.0

Open API
1.0

= Updated
= No change from last release

= New

Rest Client
1.0

OpenAPI 1.0

@rafabene

Management of microservices in an MSA can become unwieldy as the number of
microservices increases. Microservices can be managed via their APIs.

Management, security, load balancing, and throttling are policies that can be
applied to APIs fronting microservices. OpenAPI provides Java interfaces and

programming models which allow Java developers to natively produce OpenAPI
v3 documents from their JAX-RS applications.

https://github.com/eclipse/microprofile-open-api/

https://github.com/eclipse/microprofile-open-api/

OpenAPI 1.0

@rafabene

SECTION

OpenAPI

@rafabene https://github.com/eclipse/microprofile-open-api/

O
pen A

P
I

37

https://github.com/eclipse/microprofile-open-api/

REST Client 1.0

@rafabene

In the Microservices world, we typically talk REST to other services. While the
JAX-RS specification defines a fluent API for making calls, it is difficult to make it a
true type safe client. Several JAX-RS implementations support the ability to take

an interface definition and create a JAX-RS client from it (JBoss RestEasy,
Apache CXF) as well as being supported by a number of service providers (Wildfly
Swarm, OpenFeign). MicroProfile Rest Client API provides a type-safe approach
to invoke RESTful services over HTTP in a consistent and easy-to-reuse fashion.

https://github.com/eclipse/microprofile-rest-client/

https://github.com/eclipse/microprofile-rest-client/

REST Client 1.0

@rafabene

● A type-safe approach
to invoke RESTful
services over HTTP

● More natural coding
style

● Handles HTTP
connectivity and
serialization

String apiUrl = "http://localhost:9080/movieReviewService";

MovieReviewService reviewSvc =

 RestClientBuilder.newBuilder()

 .baseUrl(apiUrl)

 .build(MovieReviewService.class);

Review review = new Review(3 /*stars*/,"Good Movie.");

reviewSvc.submitReview(movieId, review);

OpenTracing 1.0

@rafabene

Tracing the flow of a request in a distributed environment has always been
challenging but it is even more complex in a microservices architecture, where

requests traverse across not just architectural tiers but also multiple services. The
MicroProfile OpenTracing API provides a standard for instrumenting microservices

for distributed tracing.

https://github.com/eclipse/microprofile-opentracing

https://github.com/eclipse/microprofile-opentracing

Open tracing

41@rafabene

OpenTracing 1.0

@rafabene

https://docs.thorntail.io/2.3.0.Final/#tracing-a-complex-service_thorntail

https://docs.thorntail.io/2.3.0.Final/#tracing-a-complex-service_thorntail

http://opentracing.io/

http://opentracing.io/

https://www.jaegertracing.io/

Open Tracing - Jaeger

https://www.jaegertracing.io/

Eclipse MicroProfile 1.4 (Jun, 2018)

@rafabene

MicroProfile 1.4

JAX-RS 2.0JSON-P 1.0CDI 1.2 Config 1.3

Fault
Tolerance 1.1

JWT
Propagation

1.1

Health
Check 1.0Metrics 1.1

Open
Tracing 1.1

Open API
1.0

= Updated
= No change from last release

= New

Rest Client
1.1

https://github.com/eclipse/microprofile/releases/download/1.4/microprofile-spec-1.4.pdf

https://github.com/eclipse/microprofile/releases/download/1.4/microprofile-spec-1.4.pdf
https://github.com/eclipse/microprofile/releases/download/1.4/microprofile-spec-1.4.pdf

Eclipse MicroProfile 2.0 (Jun, 2018)

@rafabene

MicroProfile 2.0

JAX-RS 2.1JSON-P 1.1CDI 2.0

Config 1.3

Fault
Tolerance 1.1

JWT
Propagation

1.1

Health
Check 1.0Metrics 1.1

Open
Tracing 1.1

Open API
1.0

= Updated
= No change from last release (MicroProfile 1.4)

= New

Rest Client
1.1

JSON-B 1.0

https://github.com/eclipse/microprofile/releases/download/2.0/microprofile-spec-2.0.pdf

https://github.com/eclipse/microprofile/releases/download/2.0/microprofile-spec-2.0.pdf

Eclipse MicroProfile 2.0 - Goals

@rafabene

● Alignment of Java EE related APIs to Java EE 8
release:

● Updated CDI, JSON-P, JAX-RS, and added JSON-B

Eclipse MicroProfile 2.1 (Oct, 2018)

@rafabene

= Updated
= No change from last release (MicroProfile 2.0)

= New

https://github.com/eclipse/microprofile/releases/download/2.1/microprofile-spec-2.1.pdf

MicroProfile 2.1

JAX-RS 2.1JSON-P 1.1CDI 2.0

Config 1.3

Fault
Tolerance 1.1

JWT
Propagation

1.1

Health
Check 1.0Metrics 1.1

Open
Tracing 1.2

Open API
1.0

Rest Client
1.1

JSON-B 1.0JAX-RS 2.1JSON-P 1.1CDI 2.0 JSON-B 1.0

= Java EE / Jakarta EE

https://github.com/eclipse/microprofile/releases/download/2.1/microprofile-spec-2.1.pdf

Eclipse MicroProfile 2.2 (Feb, 2019)

@rafabene

MicroProfile 2.2

JAX-RS 2.1JSON-P 1.1CDI 2.0

Config 1.3

Fault
Tolerance

2.0

JWT
Propagation

1.1

Health
Check 1.0Metrics 1.1

Open
Tracing 1.3 Open API 1.1

= Updated
= No change from last release (MicroProfile 2.1)

= New

Rest Client
1.2

JSON-B 1.0JAX-RS 2.1JSON-P 1.1CDI 2.0 JSON-B 1.0

= Java EE / Jakarta EE

Eclipse MicroProfile 3.0 Released!

MicroProfile 3.0

JAX-RS 2.1JSON-P 1.1CDI 2.0

Config 1.3

Fault
Tolerance

2.0

JWT
Propagation

1.1

Health
Check 2.0Metrics 2.0

Open
Tracing 1.3 Open API 1.1

= Updated
= No change from last release (MicroProfile 2.2)

= New

Rest Client
1.3

JSON-B 1.0JAX-RS 2.1JSON-P 1.1CDI 2.0 JSON-B 1.0

= Java EE / Jakarta EE

Eclipse MicroProfile 3.0 Released!
On June 11, 2019, MicroProfile 3.0 was released.
Offered in the release:

● Java EE 8 continued alignment
● A richer feature set for Rest Client, Metrics, and Health

Check
● Metrics and Health Check have introduced breaking API

changes
● CDI-based and programmatic interfaces
● Test Compatibility Kit (TCK), Javadoc, PDF doc for

download
Other news:

● Boost project has been added to the MicroProfile
sandbox

● start.microprofile.io planning to release command-line
interface

https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://start.microprofile.io/

Topics under discussion

@rafabene

● Long Running Actions
● Reactive Messaging
● GraphQL
● Concurrency
● Reactive Relational Database Access
● Event Data
● Service meshes

https://github.com/eclipse/microprofile-lra
https://github.com/eclipse/microprofile-reactive-messaging
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/graphql
https://github.com/eclipse/microprofile-concurrency

Demo
github.com/rafabene/microprofile-demo

https://github.com/rafabene/microprofile-demo

Get Involved!

@rafabene

Video HangoutsBi-Weekly & Quarterly
General community

Meetings

MicroProfile ProjectsGoogle Groups

YouTube Channel

https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
http://microprofile.io/projects
https://groups.google.com/forum/#!forum/microprofile
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w?view_as=subscriber

@rafabene

@RAFABENE

